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Abstract
This paper is a mini-summary of four new advances in the theory of PT -
symmetric quantum mechanics. It describes some new calculations that were
completed in 2005. The first advance concerns the classical coordinate-
space trajectories in some PT -symmetric theories. Depending on the initial
conditions, one can find arbitrarily long periodic PT -symmetric classical
trajectories. The longer trajectories originate from smaller regions of initial
conditions. There is an interesting resemblance to the so-called period-doubling
route to chaos. The second advance concerns the perturbative construction
of the C operator for a PT -symmetric square well. The result has notable
similarities to and differences from that for the PT -symmetric cubic oscillator.
The third advance is a detailed comparison of a PT -symmetric Hamiltonian
and the corresponding Hermitian Hamiltonian. It is argued that a perturbative
construction of the Hermitian Hamiltonian leads to an almost intractable theory.
The fourth advance concerns reflectionless potentials and PT symmetry and a
possible connection with problems in cosmology.

PACS numbers: 11.30.Er, 45.50.Dd, 02.30.Fn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The purpose of this paper is to summarize four very recent developments in the study of
PT -symmetric Hamiltonians. The first concerns a detailed study in collaboration with Chen,
Darg and Milton of classical PT -symmetric Hamiltonians [1]. The focus of this study is on
the class of Hamiltonians

H = p2 + x2(ix)ε (ε � 0). (1)

Hamiltonians of this form were first introduced in [2]. This is a large class of complex
PT -symmetric non-Hermitian quantum-mechanical Hamiltonians whose spectra are real [3]
and which exhibit unitary time evolution [4]. What is the nature of the underlying classical
theories described by these Hamiltonians? The first study of the classical mechanics of these
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Hamiltonians was done in 1999 [5] and more recent studies were published in 2004 [6] and
2005 [7]. While these studies reported interesting results, many remarkable features of the
classical trajectories were not discovered. We report in section 2 some new and surprising
properties of classical orbits.

The second topic addressed here concerns the C operator for the PT -symmetric square
well. A quantum-mechanical Hamiltonian having an unbroken PT symmetry also possesses
a hidden symmetry that is represented by the linear operator C [4]. This symmetry operator
C guarantees that the Hamiltonian acts on a Hilbert space with an inner product that is both
positive definite and conserved in time, thereby ensuring that the Hamiltonian can be used to
define a unitary theory of quantum mechanics. The study of non-Hermitian Hamiltonians and
the construction of a positive definite inner product for the associated Hilbert space can be
traced back to many papers and books. For example, an early treatment of the problem for the
case of finite matrices is given by Pease [8] and a beautiful paper in which many of the later
developments in the field are anticipated was published by Scholtz, Geyer and Hahne [9].

In section 3 it is shown how to construct the operator C for the PT -symmetric square
well using perturbative techniques. The results discovered in collaboration with Tan [10] are
somewhat surprising because the C operator, even for this elementary potential, is found to
have a new and rather complicated structure.

The third topic involves work done in collaboration with Chen and Milton [11] regarding
the relationship between a PT -symmetric Hamiltonian H and the corresponding Hermitian
Hamiltonian h. Section 4 compares both forms of a non-Hermitian ix3 quantum-mechanical
Hamiltonian and demonstrates that it is much harder to perform calculations in the Hermitian
theory because the perturbation series for the Hermitian Hamiltonian is constructed from
divergent Feynman graphs.

Finally, in section 5 we review recent work done in collaboration with Ahmed and Berry
[12]. The point of this work is that the eigenvalues of a PT -symmetric −x4 potential can be
obtained without having to impose boundary conditions in the complex-x plane. The boundary
conditions on the real-x axis are simply that the potential be reflectionless. This work suggests
some interesting possible applications in cosmological models.

2. Classical trajectories for PT -symmetric Hamiltonians

The possible trajectories x(t) for a classical particle whose dynamics is governed by the
Hamiltonian (1) have a rich and elaborate structure that depends sensitively on the initial
conditions. We believe that by understanding the classical orbits we will reach a deeper
understanding of the quantum system. For example, the transition between a broken and an
unbroken PT symmetry is fundamentally a classical transition. Without loss of generality
we assume that the energy of a classical particle is 1. We can then solve numerically the
Heisenberg equations of motion.

Three interesting features of these trajectories were discovered in previous studies [5, 6]:
First, a complex non-Hermitian Hamiltonian typically generates complex classical trajectories.
Thus, even if the classical particle is initially on the real-x axis it is subject to complex forces,
and thus to obey the complex version of Newton’s third law it will move off the real axis and
travel through the complex plane. For example, in figure 1 we display three closed classical
trajectories for the case ε = π − 2. First, there is the path connecting the turning points,
which are indicated by dots. Two other trajectories that enclose these two turning points are
also indicated.

When ε = 0 there are two turning points on the real-x axis, but as ε increases from 0, this
pair of turning points at x = ±1 moves downward into the complex-x plane. These turning
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Figure 1. Classical trajectories in the complex-x plane for the complex oscillator whose
Hamiltonian H = p2 − (ix)π is obtained by setting ε = π − 2 in (1). The trajectories represent
possible paths of a classical particle. By virtue of Cauchy’s integral theorem all closed trajectories
have the same period T as given in (2).

points are determined by the equation 1 + (ix)2+ε = 0. When ε is noninteger, this equation
has many solutions, all having absolute value 1: x = exp

(
iπ 4N−4−ε

4+2ε

)
, where N is an integer.

These turning points occur in PT -symmetric pairs (that is, pairs that are reflected through the
imaginary axis) labelled by k = 1, 2, 3, . . .. For each k the pair of turning points is given by
N = k and N = −k + 1. Note that the pair of turning points at ε = 0 deforms continuously
into the k = 1 pair of turning points when ε �= 0. For ε = π − 2 these turning points are
shown in figure 1 as dots.

The general formula for the period of a closed orbit whose topology is like that of the
orbits shown in figure 1 is [5]

T = 2
√

π
�

(
3+ε
2+ε

)
�

(
4+ε

4+2ε

) cos
( επ

4 + 2ε

)
(ε � 0). (2)

For the closed orbits shown in figure 1, we find that T = 2.332 76.
A second previously known feature of the classical trajectories is that the classical domain

for the Hamiltonian (1) is a multisheeted Riemann surface when ε is noninteger. Thus, the
classical trajectory may visit more than one sheet of the Riemann surface. In [5] classical
trajectories that visit three sheets of the Riemann surface were discovered, but no trajectories
were found that entered more than three sheets. To construct closed orbits having a more
complicated topological structure than those shown in figure 1, we take ε = π − 2 and choose
an initial condition for which the classical trajectory crosses the branch cut on the positive
imaginary axis and leaves the principal sheet of the Riemann surface. In figure 2 we show
such a trajectory. This trajectory visits three sheets of the Riemann surface, the principal sheet
(sheet 0) on which the trajectory is shown as a solid line, and sheets ±1 on which the trajectory
is shown as a dashed line. On the Riemann surface the resulting trajectory is PT -symmetric
(left–right symmetric). The period of the orbit in figure 2 is T = 11.8036, which is roughly
five times longer than the periods of the orbits shown in figure 1. This is because the orbit is
topologically more complicated and encloses branch cuts joining three pairs rather than one
pair of complex turning points. (The period of the orbit is roughly proportional to the number
of times that the orbit crosses the imaginary axis.)
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Figure 2. A classical trajectory in the complex-x plane for the Hamiltonian H = p2 − (ix)π .
The initial condition is chosen so that the path crosses the branch cut on the positive imaginary
axis and leaves the principal sheet of the Riemann surface. On the principal sheet the trajectory is
indicated by a solid line. The classical particle visits two other sheets of the Riemann surface on
which the trajectory is indicated by a dashed line. The closed orbit is PT symmetric (has left–right
symmetry).

Figure 3. Classical trajectories in the complex-x plane for the Hamiltonian in (1) with ε = −0.2.
These trajectories begin on the negative imaginary axis very close to the origin. One trajectory
evolves forward in time and the other goes backward in time. The trajectories are open orbits
and show the particle spiralling off to infinity. The trajectories begin on the principal sheet of the
Riemann surface; as they cross the branch cut on the positive imaginary axis, they visit the higher
and lower sheets of the surface. Note that the trajectories do not cross because they lie on different
sheets.

A third previously known feature of the classical trajectories is that the classical trajectories
manifest the PT symmetry of the Hamiltonian. Under parity reflection P the position of the
particle changes sign: P : x(t) → −x(t). Under time reversal T the sign of both t and
i are reversed, so T : x(t) → x∗(−t). Thus, under combined PT reflection the classical
trajectory is replaced by its mirror image with respect to the imaginary axis on the principal
sheet of the Riemann surface. When ε � 0, the PT symmetry of H in (1) at the quantum
level is unbroken and, as a consequence, the classical orbits are closed periodic paths in the
complex plane. When ε is negative, the classical trajectories are open (and nonperiodic). In
figure 3 we consider the case ε = −0.2 and show a pair of paths that begin on the negative
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Figure 4. A classical trajectory in the complex-x plane for the complex Hamiltonian H =
p2 − (ix)π . This complicated trajectory begins at x(0) = −7.1i and visits 11 sheets of the
Riemann surface. Its period is approximately T = 255.3. This figure displays the projection of
the trajectory onto the principal sheet of the Riemann surface. Note that this trajectory does not
cross itself.

imaginary axis. One path evolves forward in time and the other path evolves backward in
time. Each path spirals outward and eventually moves off to infinity. Note that the pair of
paths is a PT -symmetric structure. Note also that the paths do not cross because they are
on different sheets of the Riemann surface. The function (ix)−0.2 requires a branch cut, and
we take this branch cut to lie along the positive imaginary axis. The forward-evolving path
leaves the principal sheet (sheet 0) of the Riemann surface and crosses the branch cut in the
positive sense and continues on sheet 1. The reverse path crosses the branch cut in the negative
sense and continues on sheet −1. Figure 3 shows the projection of the classical orbit onto the
principal sheet.

We have recently discovered that the structure of the complex trajectories is much richer
and more elaborate than previously noticed. One can find trajectories that visit huge numbers
of sheets of the Riemann surface and exhibit fine structure that is exquisitely sensitive to the
initial condition x(0) and to the value of ε. Small variations in x(0) and ε give rise to dramatic
changes in the topology of the classical orbits and to the size of the period. Depending on the
value of x(0), there are periodic orbits having short periods as well as orbits having very long
and possibly infinitely long periods. These results are reminiscent of the period-lengthening
route to chaos that is observed in logistic maps. Furthermore, for a given initial condition
the classical behaviour undergoes remarkable transitions as ε is varied. This behaviour is
described in detail in [1]. We focus here on the dependence of classical orbits on initial
conditions.

We have found initial conditions that generate trajectories that visit many sheets repeatedly.
Figure 4 shows a classical trajectory starting at x(0) = −7.1i that visits 11 sheets of the
Riemann surface. Its period is T = 255.3. The structure of this orbit near the origin
is complicated and thus a magnified version is shown in figure 5. Figures 4 and 5 are
complicated, so we give a more understandable representation of the classical orbit in which
we plot the complex phase (argument) of x(t) as a function of t. In figure 6 we present such a
plot showing the complex phase for one full period.
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Figure 5. An enlargement of the classical trajectory x(t) in figure 4 showing the detail near the
origin in the complex-x plane. This classical path never crosses itself; the apparent self-intersections
are paths on different sheets of the Riemann surface.

Figure 6. Argument (complex phase) of the classical orbit shown in figures 4 and 5 plotted as
a function of time for one complete cycle. The period of this cycle is T = 255.3. The classical
particle starts on the negative imaginary axis on sheet 0 where the phase is defined to be 0. The
particle then visits 11 sheets of the Riemann surface from sheet −5 to sheet 5 before returning to
its starting point.

The period of the classical orbits is exquisitely sensitive to the initial conditions. To
illustrate this sensitivity we show in figure 7 the size of the period for ε = π − 2 as a function
of the initial condition x(0) in a small portion of the complex-x plane containing the negative
imaginary axis from −8.5i to −9.0i. Note that initial conditions chosen from this small region
give rise to classical orbits whose periods range from 231.1 up to 28 104.7. The regions
of extremely long periods become narrower and more difficult to observe numerically. It is
impossible to resolve the fine detail between the two longest periods, and we conjecture that
there are infinitely many arbitrarily thin regions of initial conditions between −8.767i and
−8.770i that give rise to arbitrarily long periods.

We display in figure 8 one of the long-period orbits in figure 7. Figure 8 shows the
complex argument of x(t) as a function of time t for ε = π − 2 and the initial condition
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Figure 7. Small portion of the complex-x plane showing the dependence of the periods T of
the classical orbits on the choice of initial condition x(0) for the case ε = π − 2. Note that
T is extremely sensitive to the value of x(0). There is an unresolved region between the band
corresponding to T = 28 104.7 and T = 13 755.2. We conjecture that arbitrarily long periods can
be found in arbitrarily thin regions between x(0) = −8.767i and x(0) = −8.770i.

Figure 8. Argument of a long-period classical orbit for which ε = π − 2 and the initial condition
is x(0) = −8.630 26i. This orbit has period T = 10 554.9 and visits 17 sheets of the Riemann
surface. The inset shows the fine oscillatory structure.

x(0) = −8.630 26i. This orbit has period T = 10 554.9 and visits 17 sheets of the Riemann
surface. The inset displays the fine structure of this oscillatory behaviour.

A characteristic feature of long orbits is the persistent oscillation in the classical path.
There are huge numbers of concentric U-turns in portions of the complex plane. These U-turns
focus about one of the many complex turning points and illustrate in a rather dramatic fashion
the complex nature of the classical turning point. In figure 9 we plot the complex argument of
x(t) as a function of time t for ε = π − 2 and initial condition x(0) = −17i. This orbit has
period T = 452.6 and visits five sheets of the Riemann surface. We show the U-turns of this
orbit near a turning point in figure 10.

Figures 9 and 10 explain heuristically how very long-period orbits arise. For a classical
trajectory to travel a great distance in the complex plane, its path must weave through a mine
field of turning points. If the trajectory comes under the influence of a distant turning point,



10000 C M Bender

Figure 9. Argument of the classical orbit as a function of time t for ε = π −2 and initial condition
x(0) = −17i. This orbit has period T = 452.6 and visits five sheets of the Riemann surface. Note
the persistent oscillation in the classical orbit.

Figure 10. Classical orbit in the complex-x plane corresponding to figure 9. The oscillation in
figure 9 corresponds to concentric U-turns around a complex turning point.

it executes a large number of concentric U-turns and is eventually thrown back to its starting
point. However, if the initial condition is chosen carefully, the complex trajectory can weave
past many turning points before it eventually encounters a turning point that takes control of
the classical particle. We speculate that it may be possible to find a special critical initial
condition for which the classical path manages to avoid and weave past all turning points and
therefore has an infinitely long period.

3. The C operator for the PT -symmetric square well

An especially simple and elegant model of a quantum-mechanical Hamiltonian having an
unbrokenPT -symmetry is thePT -symmetric square well, whose Hamiltonian H = p2+V (x)
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has the potential V (x) = ∞ for x < 0 and x > π and

V (x) =
{

iε for π
2 < x < π,

−iε for 0 < x < π
2 .

(3)

This Hamiltonian reduces to the conventional Hermitian square well in the limit ε → 0. For
this H the parity operator P performs a reflection about x = π

2 : P : x → π − x. The
PT -symmetric square-well Hamiltonian was invented and first examined by Znojil [13] and
it has been heavily studied by many other researchers [14].

To interpret a non-Hermitian PT -symmetric Hamiltonian as defining a conventional
quantum-mechanical model it is necessary to find the hidden symmetry operator C. This
operator is used to define the Hilbert-space inner product with respect to which the Hamiltonian
H is self-adjoint [4]. In [4] the C operator in coordinate space was shown to have a
representation as a sum over the eigenfunctions φn(x) of H:

C(x, y) =
∞∑

n=0

φn(x)φn(y). (4)

The eigenfunctions are normalized to be eigenstates of PT with eigenvalue 1,

PT φn(x) = φn(x), (5)

and the integral of the square of the nth eigenfunction oscillates in sign:∫
dx [φn(x)]2 = (−1)n. (6)

For complicated Hamiltonians the C operator cannot be obtained in closed form. However,
[15] explains how to evaluate perturbatively the sum in (4) for

H = p2 + x2 + iεx3. (7)

In [16] the methods used in [15] were extended to systems having an infinite number of degrees
of freedom. It was shown how to solve the three simultaneous algebraic equations satisfied
by C:

C2 = 1, [C,PT ] = 0, [C,H ] = 0. (8)

In [16] the C operator is demonstrated to be a product of the exponential of an antisymmetric
Hermitian operator Q and the parity operator P:

C = eQP. (9)

In all the examples studied so far the C operator is a combination of integer powers of x
and integer numbers of derivatives multiplying the parity operator P . Hence, the Q operator is
a polynomial in the operators x and p = −i d

dx
. The novelty of the PT -symmetric square-well

potential (3) is that C contains integrals of P and thus the Q operator, while it is a simple
function, is not a polynomial in x and p. Therefore, it cannot be found easily by the algebraic
perturbative methods introduced in [16].

Our procedure here is first to solve the Schrödinger equation

−φ′′
n(x) + V (x)φn(x) = Enφn(x) (n = 0, 1, 2, 3, . . .) (10)

subject to the boundary conditions φn(0) = φn(π) = 0. We obtain φn(x) as a perturbation
series to second order in powers of ε. The eigenfunctions are normalized according to (5)
and (6). Then, we evaluate the sum in (4). The advantage of the domain of the square
well being 0 < x < π is that this sum reduces to Fourier sine and cosine series that can be
summed exactly. After evaluating the sum, we translate the domain of the square well to the
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symmetric region −π
2 < x < π

2 . On this domain the parity operator in coordinate space is
P(x, y) = δ(x + y). Finally, we show that the C operator to order ε2 has the form in (9), and
we evaluate Q to order ε2.

We begin by solving the Schrödinger equation (10) in the right
(
x > π

2

)
and left

(
x < π

2

)
regions of the square well:

φn, R(x) = an

{
i

1
2 (1−(−1)n) sin(n + 1)x +

[
i

1
2 (1+(−1)n)

(π

2
− x

2

) (−1)n cos(n + 1)x

(n + 1)

− 1

2
(1 − (−1)n)

sin(n + 1)x

2(n + 1)2

]
ε + i

1
2 (1−(−1)n)

[
1

2
(1 + (−1)n)

(x

4
− π

4

)

× cos(n + 1)x

(n + 1)3
+

(
x2

8
− πx

4
+

π2

16

)
sin(n + 1)x

(n + 1)2

]
ε2 + O(ε3)

} (
x >

π

2

)
,

(11)

φn,L(x) = an

{
i

1
2 (1−(−1)n) sin(n + 1)x +

[
i

1
2 (1+(−1)n) x

2

(−1)n cos(n + 1)x

(n + 1)

+
1

2
(1 − (−1)n)

sin(n + 1)x

2(n + 1)2

]
ε + i

1
2 (1−(−1)n)

[
1

2
(1 + (−1)n)

x

4

cos(n + 1)x

(n + 1)3

+

(
x2

8
− π2

16

)
sin(n + 1)x

(n + 1)2

]
ε2 + O(ε3)

} (
x <

π

2

)
. (12)

These eigenfunctions and their first derivatives are continuous at x = π
2 . Next, we impose the

normalization requirements in (5), (6) to find the coefficient an in (11), (12):

an =
√

2

π

[
1 − (−1)n

(
(2 − (−1)n)

(6 − 2(−1)n)(n + 1)4
− (−1)nπ2

16(n + 1)2

)
ε2 + O(ε4)

]
. (13)

With this normalization, the PT inner product between φm(x) and φn(x) is (−1)nδmn +O(ε4).
We calculate the sum in (4) that represents C(x, y) by directly substituting the

eigenfunctions φn(x) from (11), (12). There are four regions of x and y to consider: (i)
x > π

2 , y > π
2 ; (ii) x > π

2 , y < π
2 ; (iii) x < π

2 , y < π
2 ; (iv) x < π

2 , y > π
2 . To zeroth-order in

ε, φn is common to all four regions and the calculation is easy. We find that

C(0)(x, y) = 2

π

∞∑
n=0

(−1)n sin(n + 1)x sin(n + 1)y. (14)

This is just the Fourier sine series for the parity operator in the range 0 < x < π :

C(0)(x, y) = δ(x + y − π). (15)

On the symmetric domain −π
2 < x < π

2 this formula becomes C(0)(x, y) = δ(x + y), which
is equivalent to the coordinate-space condition of completeness.

The calculation of C(x, y) to first order in ε requires the evaluation of Fourier sine and
cosine series. These are expressed in terms of integrals of delta functions. The calculation is
difficult and is described in detail in [10]. The result for the four regions can be condensed
into a single expression:

C(1)(x, y) = 1
4 i[x + y − π − θ(π − x − y) (|x − y| − π) + θ(x + y − π) (|x − y| − π)].

(16)



Four easy pieces 10003

On the square symmetric region −π
2 < (x, y) < π

2 , this expression becomes

C(1)(x, y) = 1
4 i[x + y + ε(x + y) (|x − y| − π)], (17)

where ε(x) is the standard step function

ε(x) =



1 (x > 0),
0 (x = 0),
−1 (x < 0).

(18)

Note that C(1)(x, y) vanishes on the boundary of the square domain because the eigenfunctions
φn(x) in (4) are required to vanish at x = 0 and x = π .

The procedure for calculating the second-order contribution C(2)(x, y) to the C operator
is similar to but even more complicated than that used for calculating C(1)(x, y). We must
calculate sums of products of sines and cosines, but this time the presence of factors of
(n + 1)4, (n + 1)3 and (n + 1)2 in the denominator requires the use of quadruple, triple and
double integrals of delta functions to simplify the expression for C(2)(x, y). Combining the
contributions from the four regions and transforming to the symmetric domain −π

2 < (x, y) <
π
2 , we obtain the single expression:

C(2)(x, y) = 1
96π3 + 1

8xyπ − 1
16π2(x + y) ε(x + y) + 1

8π(x|x| + y|y|) ε(x + y)

− 1
24 (x3 + y3) ε(x + y) − 1

24 (y3 − x3) ε(y − x)

− 1
4xy{|x|[θ(x − y) θ(−x − y) + θ(y − x) θ(x + y)]

+ |y|[θ(y − x) θ(−x − y) + θ(x − y) θ(x + y)]}. (19)

The function C(2)(x, y) vanishes on the boundary of the symmetric square domain −π
2 <

(x, y) < π
2 because the eigenfunctions φn(x) from which it was constructed vanish at the

boundaries of the square well.
In summary, our final result for the C operator to order ε2 on the symmetric domain

−π
2 < (x, y) < π

2 is

C(x, y) = δ(x + y) + εC(1)(x, y) + ε2C(2)(x, y) + O(ε3), (20)

where C(1)(x, y) is given in (17) and C(1)(x, y) is given in (19). We have verified by explicit
calculation that to order ε2 this C operator obeys the algebraic equations (8). For example, in
coordinate space the third of these equations, C2 = 1, reads∫ π/2

−π/2
dy C(x, y) C(y, z) = δ(x − z) + O(ε3). (21)

The last step in this calculation is to determine the operator Q from (20) by using (9).
This is a long calculation: we first multiply C(x, z) on the right by δ(z + y), the parity operator
P in coordinate space, and then integrate with respect to z. This gives the coordinate space
representation of CP = eQ. Next, we take the logarithm of the resulting expression and
expand it as a series in powers of ε to obtain Q. We find that the coefficient of ε2 in this
expansion is zero, and we obtain a simple result for Q(x, y) on the domain −π

2 < x < π
2 :

Q(x, y) = 1
4 iε[x − y + ε(x − y) (| x + y | − π)] + O(ε3). (22)

Thus, by expressing C in the form eQP , we have found that the operator Q for the PT -
symmetric square-well model has an expansion in odd powers of ε, just as in the case of the
cubic PT -symmetric oscillator whose Hamiltonian is given in (7). Our result (22) for Q is an
elementary function.

The most noteworthy property of the C operator is that the Q operator in (22) is a
nonpolynomial function, and such a structure had not been seen in previous studies of C. We
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expected that for such a simple PT -symmetric Hamiltonian it would be possible to calculate
the C operator exactly and in closed form. It surprised us that even for this elementary model
the C operator is so nontrivial.

4. Comparison of PT -symmetric and Hermitian Hamiltonians

Mostafazadeh has shown that the square root of the positive operator eQ can be used to construct
a similarity transformation that converts a non-Hermitian PT -symmetric Hamiltonian H to an
equivalent Hermitian Hamiltonian h [17]:

h = ρ−1Hρ, (23)

where the operator ρ is the square root of CP: ρ = eQ/2. The Hamiltonian h that results
from the similarity transformation (23) has been studied perturbatively by Jones [18] and
Mostafazadeh [19].

Equation (23) raises the following question: in which form of the quantum theory, the
non-Hermitian or the Hermitian one, is it easier to perform calculations? This question is
answered in [11] where both forms of a non-Hermitian ix3 quantum-mechanical Hamiltonian
are compared. We summarize the argument here and demonstrate that it is much harder to
perform calculations in the Hermitian theory because the perturbation series for the Hermitian
Hamiltonian is constructed from divergent Feynman graphs. For the Hermitian version of the
theory, dimensional continuation can be used to regulate the divergent graphs that contribute
to the ground-state energy to order O(g2). The results that are obtained are identical to those
found more simply and without divergences in the non-HermitianPT -symmetric Hamiltonian.
The O(g4) contribution to the ground-state energy of the Hermitian version of the theory
involves graphs with overlapping divergences, and such graphs are very difficult to regulate.
In contrast, the graphs for the non-Hermitian version of the theory are finite to all orders and
are easy to evaluate.

We focus here on the Hermitian Hamiltonian corresponding to the cubic non-Hermitian
PT -symmetric Hamiltonian

H = 1
2p2 + 1

2x2 + igx3. (24)

The eigenvalue problem corresponding to the quantum-mechanical Hamiltonian (24) is easy
to solve perturbatively, and we can calculate the ground-state energy as a series in powers of
g2. The fourth-order result is

E0 = 1
2 + 11

8 g2 − 465
32 g4 + O(g6). (25)

However, our objective is to study PT -symmetric quantum field theories, and therefore we
need to use Feynman-diagrammatic methods. For a quantum field theory the perturbation
expansion of the ground-state energy is the negative sum of the connected Feynman graphs
having no external lines. To evaluate Feynman graphs we must first determine the Feynman
rule from the Lagrangian. Thus, we begin by constructing the Lagrangian corresponding to
the Hamiltonian H in (24):

L = 1
2 (pẋ + ẋp) − H. (26)

Because the interaction term is local (it depends only on x and not on p), the formula for ẋ is
simple: ẋ = p. Thus, we have

L = 1
2 ẋ2 − 1

2x2 − igx3. (27)

From (27) we read off the Euclidean Feynman rules: the three-point vertex amplitude is
−6ig. In coordinate space a line connecting vertices at x and y is represented by 1

2 e−|x−y|



Four easy pieces 10005

vertex: • −6ig

line: • •
x y

1
2
e−|x−y| (coordinate space)

p 1
p2+1

(momentum space)

Figure 11. Feynman rules for the Lagrangian (27). For this simple local trilinear interaction the
Feynman graphs are built from three-point vertices connected with lines. The line amplitudes in
both coordinate space and momentum space are shown.

(a1) • • SN = 1
8

(a2) • • SN = 1
12

Figure 12. The two connected vacuum graphs, labelled (a1) and (a2), contributing to the ground-
state energy of H in (24) to order g2. The symmetry numbers for each graph are indicated.

and in momentum space the line amplitude is 1
p2+1 . These Feynman rules are illustrated in

figure 11.
In order g2 two connected graphs contribute to the ground-state energy, and these are

shown in figure 12. The symmetry number for graph (a1) is 1
8 and the symmetry number

for graph (a2) is 1
12 . Both graphs have vertex factors of −36g2. Evaluating the Feynman

integrals for (a1) and (a2) gives V/4 and V/12, respectively, where V = ∫
dx is the volume

of coordinate space. Thus, the sum of the graph amplitudes is − 11
8 g2V . The contribution to

the ground-state energy is the negative of this amplitude divided by V : E2 = 11
8 g2, which

easily reproduces the g2 term in (25).
Since the energy levels of the Hermitian Hamiltonian h obtained by means of the similarity

transformation (23) are identical to those of H, we will try to recalculate the g2 term in the
expansion of the ground-state energy in (25) using the Feynman rules obtained from the
transformed Hamiltonian h. The first step in this calculation is to construct the operator Q,
which is given in [14] as

Q = (− 4
3p3 − 2S1,2

)
g +

(
128
15 p5 + 40

3 S3,2 + 8S1,4 − 12p
)
g3 + O(g5), (28)

where the symbol Sm,n represents a totally symmetric combination of m factors of p and n
factors of x.

We can use (23) to construct h. The result taken from [18, 19] is

h = 1
2p2 + 1

2x2 +
(

3
2x4 + 3S2,2 − 1

2

)
g2

+
(− 7

2x6 − 51
2 S2,4 − 36S4,2 + 2p6 + 15

2 x2 + 27p2
)
g4 + O(g6). (29)

To obtain the Feynman rules we construct the corresponding Hermitian Lagrangian 	. To do
so, we must replace the operator p with the operator ẋ by using the formula p = ẋ − 6g2s1,2,
where sm,n represents a totally symmetric combination of m factors of ẋ and n factors of x.
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• −36g2

• 12g2
|
|

• 1
2
g2V

Figure 13. The three Euclidean-space vertices to order g2 for the Hermitian Lagrangian 	 in
(30). Note that the second vertex has tick marks on two of the legs. These tick marks indicate
coordinate-space derivatives that arise because of derivative coupling. Derivative coupling results
in divergent Feynman graphs.

• 54g4||

• −27g4

• 2520g4

• −2088g4||

• 1728g4|| |
|

• 1440g4|| |
| |
|

Figure 14. The six Euclidean-space vertices to order g4 for the Hermitian Lagrangian 	 in (30).
Four of the vertices have tick marks on the legs to indicate derivative coupling.

The result for the Hermitian Lagrangian 	 is

	 = 1
2 ẋ2 − 1

2x2 − (
3
2x4 + 3s2,2 − 1

2

)
g2

+
(

7
2x6 + 87

2 s2,4 + 36s4,2 − 2ẋ6 − 27
2 x2 − 27ẋ2

)
g4 + O(g6). (30)

From this Lagrangian we read off the Euclidean-space Feynman rules. Unlike the PT
version of the theory, increasingly many new vertices appear in every order of perturbation
theory. The three vertices to order g2 are shown in figure 13 and the six vertices to order g4 are
shown in figure 14. Some of the lines emerging from the vertices have tick marks to indicate
a derivative in coordinate space and a factor of ip in momentum space. The tick marks are a
result of the derivative coupling terms in the Lagrangian 	. This derivative coupling gives rise
to divergent Feynman graphs.

We now use the Feynman rules in figure 13 to construct the vacuum graphs contributing
to the ground-state energy in order g2. These graphs are shown in figure 15. The simplest
graph is (b3) because there is no Feynman integral to perform. This graph arises from the
constant term in 	 in (30). The value of this graph is 1

2g2V .
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•(b1) SN = 1
8

•(b2) SN = 1
4

|
|

(b3) • SN = 1

Figure 15. The three graphs contributing to the ground-state energy of the Hermitian Lagrangian
	 in (30) in order g2. While graphs (b1) and (b3) are finite, the Feynman integral for graph (b2)
diverges and must be regulated to obtain a finite result.

Graph (b1) has symmetry number 1
8 and vertex factor −36g2 and the Feynman integral

in momentum space is(∫ ∞

−∞

dp

2π

1

p2 + 1

)2

= 1

4
. (31)

The integrals associated with this graph are convergent. The value of graph (b1) is − 9
8g2V ,

where the factor of V comes from the translation invariance of the graph.
The interesting graph is (b2). The symmetry number is 1

4 , the vertex factor is 12g2, and
the Feynman integral in momentum space is∫ ∞

−∞

dp

2π

p2

p2 + 1

∫ ∞

−∞

dq

2π

1

q2 + 1
. (32)

The q integral is convergent and gives the value 1
2 . However, the p integral is divergent. We

therefore regulate it using dimensional continuation and represent its value as the limit as the
number of dimensions approaches 1:

lim
D→1

2
∫ ∞

0

rD−1dr

2π

r2

r2 + 1
= lim

D→1

�
(
1 + 1

2D
)
�

(− 1
2D

)
2π

= −1

2
. (33)

Hence, the value of graph (b2) is − 3
4g2V , where again the volume factor V comes from

translation invariance. Adding the three graphs (b1), (b2) and (b3), dividing by V , and
changing the sign gives the result 11

8 g2, which reproduces the result in (25). This calculation is
more difficult than that using the Feynman rules in figure 1 because there is a divergent graph.
It is surprising to find a divergent graph in one-dimensional quantum field theory (quantum
mechanics). This infinite graph is not associated with a renormalization of a physical parameter
in the Lagrangian. Rather, it is an artefact of the derivative coupling terms that arise from the
similarity transformation (23).

This dimensional-continuation procedure is effective because it extracts the correct finite
contribution from each of the divergent graphs. However, this procedure is much more difficult
to apply when there are graphs having overlapping divergences, as we will now demonstrate.
Let us extend the calculation of the ground-state energy to next order in powers of g2. This
calculation is straightforward in the non-Hermitian theory, while it is nearly impossible in
the Hermitian theory. The difficulty is not just due to the arithmetic difficulty of sorting
through large numbers of graphs, but rather is one of principle. The problem is that there
are two graphs having overlapping divergences, and calculating the numerical values of the
corresponding regulated graphs remains an unsolved problem, even in one-dimensional field
theory (quantum mechanics)!
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(f1) • •• • SN = 1
16

(f2)

• •

• •

SN = 1
16

(f3) • ••
•

SN = 1
48

(f4) •
•

••
SN = 1

8

(f5)

•

• SN = 1
24

• •

Figure 16. The five vacuum graphs contributing to the ground-state energy of the non-Hermitian
PT -symmetric Hamiltonian H in (24) to order g4. These graphs are all finite and very easy to
evaluate.

There are five graphs (f1)–(f5) contributing in order g4 to the ground-state energy of the
non-Hermitian Hamiltonian H in (24). These are shown in figure 16. The symmetry numbers
for these graphs are indicated in the figure. The vertex factors for all these graphs are 1296g4.
The Feynman integrals for these graphs are 1

16V for (f1), 11
864V for (f2), 1

8V for (f3), 1
36V for

(f4) and 1
96V for (f5). Thus, the sum of the graphs is 465

32 V . The negative of this amplitude
divided by V is E4 = − 465

32 g4. This reproduces the order g4 term in the perturbation expansion
for the ground-state energy in (25).

There are 17 graphs of order g4 contributing to the ground-state energy of the Hermitian
Hamiltonian (29). These graphs, along with their symmetry numbers, are shown in figure 17.
Seven of these graphs, (g1), (g3), (g7), (g8), (g10), (g11) and (g16) are finite and easy to
calculate. The Feynman integrals for the remaining graphs are infinite and must be regulated.
Dimensional continuation can be readily implemented as in (33) except for the graphs (g15) and
(g17). These two graphs are difficult to regulate because they have overlapping divergences.
It is dismaying to find Feynman graphs having overlapping divergences in one-dimensional
quantum field theory! Since the g4 contribution to the ground-state energy is given in (25), we
deduce that the sum of the regulated values of these two graphs (multiplied by their respective
symmetry numbers and vertex factors) must be 21

16g4V . There is no easy way to obtain this
result.

This study was motivated by the concern that solving problems in quantum field theory
might be difficult in non-Hermitian theories. The usual techniques rely on the Schwinger
action principle, the construction of functional integrals, and the identification and application
of Feynman rules. These procedures are usually formulated in a Hermitian setting. The good
news is that these standard techniques work perfectly in a non-Hermitian context, but the bad
news is that they are difficult to apply if the non-Hermitian theory is first transformed to the
equivalent Hermitian one.

We conclude by citing the comment of Jones in the second paper in [18] regarding the
critique of PT -symmetric theories in [20]: ‘Clearly, this (equation (29)) is not a Hamiltonian
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•(g1) SN = 1
2

•– – SN = 1
2

(g2)

(g3) • SN = 1
48

(g4) • SN = 1
16

– –

(g5) • SN = 1
16

– –|
|

(g6) • SN = 1
48

– –|
|

|
|

(g7) • • SN = 1
48

(g8) • • SN = 1
16

(g9) • • SN = 1
8

|

|

(g10) • • SN = 1
8

|
|

(g11) • • SN = 1
4

|

|

(g12) • • SN = 1
16

|

|

|

|

(g13) • • SN = 1
16

|
|

|
|

(g14) • • SN = 1
8

|
|

|

|

(g15) • • SN = 1
8

|
|

|
|

(g16) • • SN = 1
8

| |
||

(g17) • • SN = 1
2

| | |
|

Figure 17. The 17 graphs contributing to the order g4 term in the perturbation expansion for
the ground-state energy of the Hermitian Hamiltonian h in (29). Ten of these graphs have
divergent Feynman integrals. Of these ten, eight are relatively easy to regulate using dimensional
continuation. However, graphs (g15) and (g17) have overlapping divergences and are therefore
extremely hard to evaluate.

that one would have contemplated in its own regard were it not derived from (equation
(24)). It is for this reason that we disagree with the contention of Mostafazadeh [20] that,
‘A consistent probabilistic PT -symmetric quantum theory is doomed to reduce to ordinary
quantum mechanics.’ Mostafazadeh appears to be correct in arguing that a PT -symmetric
theory can be transformed to a Hermitian theory by means of a similarity transformation.
However, we have shown that the difficulties with the Hermitian theory are severe and virtually
insurmountable because this theory possesses a Feynman perturbation expansion that becomes
increasingly divergent as one goes to higher order. The divergences are not removable by
renormalization. Rather, they are due to increasingly singular derivative interactions. In
contrast, the non-Hermitian PT -symmetric theory is free from all such difficulties.

5. Reflectionless potentials

Normally, to find the eigenvalues of a PT -symmetric Hamiltonian one must impose boundary
conditions inside of a pair of wedges in the complex plane. However, for a special class
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of such PT quantum-mechanical Hamiltonians it is possible to impose the PT -symmetric
boundary conditions on the real axis, which lies on the edges of the complex wedges. This
allows us to obtain the PT -symmetric spectrum by imposing the requirement that the potential
be reflectionless. It further allows us to formulate some conjectures regarding the possible
applicability of PT -symmetric quantum mechanics to problems in cosmology [12].

Consider the class of Schrödinger equations

−ψ ′′
n (x) + [x2K(ix)ε − En]ψn(x) = 0, (34)

where the eigenfunction ψn(x) satisfies the PT -symmetric boundary conditions that ψn(x)

vanishes as |x| → ∞ in two wedges placed symmetrically about the imaginary axis in the
lower-half x plane. These wedges are determined by analytic continuation of the leading-order
exponentials in the asymptotic solutions of (34), namely

ψ(x) ∼ exp

(
± iε/2xK+1+ε/2

K + 1 + ε/2

)
. (35)

Within each wedge, one of the two solutions decays and one grows. The wedges are centred
about the asymptotic directions

θright = − επ

4K + 2ε + 4
, θleft = −π +

επ

4K + 2ε + 4
. (36)

The exponents in these asymptotic exponentials are purely real on the Stokes lines at the
centres of the wedges. It is easy to check that

in the right wedge : ψ− decays andψ+ grows;
in the left wedge :

{
ψ− decays and ψ+ grows ifK is odd,

ψ+ decays and ψ− grows ifKis even.
(37)

The opening angle of each wedge is θopening angle = 2π
2K+ε+2 . The wedge boundaries are anti-

Stokes lines, where the solutions are purely oscillatory [2].
We are concerned here with the infinite subclass ε = 2 for which the potential in (1), that

is

V (x) = −x2K+2 (K = 1, 2, 3, . . .), (38)

is real and appears to have the wrong sign to possess bound states. However, thePT -symmetric
solution to the Schrödinger equation (34) with the complex boundary conditions described
above does have bound states. (The potential −x2 is not included in this subclass.)

When ε = 2, the upper edges of the right and left wedges, where the solutions are purely
oscillatory, lie exactly along the positive and negative real-x axis. On the real axis the potential
(38), when interpreted in conventional terms, describes one-dimensional scattering solutions
of the Schrödinger equation, that is, travelling waves rather than decaying exponentials at
infinity. As far as the energy spectrum is concerned, we may replace the non-Hermitian
eigenvalue problem in the complex wedges by a conventional Hermitian problem defined by
the requirement that the potential be reflectionless. (To be precise, we do not claim that
these two quantum theories, the non-Hermitian PT -symmetric theory defined in the complex
wedges and the Hermitian theory defined on the real axis, are the same. However, these two
distinct theories do have the same energy spectrum and eigenfunctions.

To justify replacing the PT -symmetric theory by the Hermitian one, consider the two
dominant exponentials (35) when ε = 2:

ψ±(x) ∼ exp

(
±i

xK+2

K + 2

)
(K = 1, 2, 3, . . .). (39)
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For real x these behaviours represent waves travelling in directions given by the sign of the
current Im (ψ∗

±ψ ′
±), which is proportional to ±xK+1. Thus,

when x > 0:

ψ+(x) travels to the right and ψ−(x) travels to the left;
when x < 0: {

ψ+(x) travels to the right and ψ−(x) travels to the left (K odd),

ψ−(x) travels to the right and ψ+(x) travels to the left (K even).
(40)

These conditions match those for decay and growth in (37), so decay in the non-Hermitian
problem corresponds to a purely left-going wave that is reflectionless in the corresponding
conventional Hermitian problem. Under PT reflection (replacing x → −x and i → −i in
(39)), both wave directions reverse if K is even and do not reverse if K is odd. Reflectionlessness
persists in both cases.

The corresponding energies can be approximated by the WKB method, starting with
identification of the two turning points, defined by V (x) = E, in the wedges described above.
The turning points are

xright = E1/(2K+2) e−iπ/(2K+2) and xleft = E1/(2K+2) e−iπ+iπ/(2K+2). (41)

Quantization according to
∫ xright

xleft
dt

√
E − V (t) = (

n + 1
2

)
π for large n [21] gives

En ∼
(

(n + 1/2)
√

π(K + 2)�[(K + 2)/(2K + 2)]

�[1/(2K + 2)] cos[π/(2K + 2)]

)(2K+2)/(K+2)

(42)

for K = 1, 2, 3, . . . . Reflectionlessness can be regarded as the consequence of destructive
interference between exponentially small waves reflected separately from the turning points
xright and xleft in (41).

Thus, we have shown that for an infinite class of non-Hermitian PT -symmetric
Hamiltonians having unbroken PT symmetry, and hence real positive discrete spectra,
there is a corresponding set of Hermitian Hamiltonians whose spectra and eigenfunctions
become identical when the condition of reflectionlessness is imposed. Although these pairs of
Hamiltonians do not describe the same physics because the inner product needed to calculate
matrix elements is different, this intriguing association between non-Hermitian and Hermitian
Hamiltonians helps to explain the surprising observation [2] that the spectra of some non-
Hermitian Hamiltonians can be real.

The connection between reflectionless potentials and PT symmetry may be useful in
quantum cosmology. Recently, much attention has been given to anti-de Sitter cosmologies
[22] and de Sitter cosmologies [23, 24]. In the AdS description the universe propagates
reflectionlessly in the presence of a wrong-sign potential (−x6, for example). In the dS case
the usual Hermitian quantum mechanics is abandoned and replaced by a non-Hermitian one
in which there are ‘meta-observables’. The non-Hermitian inner product that is used in the dS
case is based on the CPT theorem just as the CPT inner product is used in PT -symmetric
quantum theory [4].
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